

Re(CO)₅**Br-Catalyzed Coupling of Epoxides** with CO₂ Affording Cyclic Carbonates under Solvent-Free Conditions

Jia-Li Jiang, Feixue Gao, Ruimao Hua,* and Xianqing Qiu

Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China

ruimao@mail.tsinghua.edu.cn

Received August 15, 2004

In the presence of a catalytic amount of Re(CO)₅Br, the coupling of epoxides with supercritical CO_2 without an organic solvent at 110 °C has afforded cyclic carbonates in good to excellent yields.

Catalytic transformation of CO_2 into useful organic compounds has received intense attention from the viewpoints of carbon source in industry and environmental problems.¹ The coupling of CO₂ with epoxides affording the cyclic carbonates is one of the most extensively studied reactions of the chemical fixation of CO₂, because cyclic carbonates not only have been used as polar aprotic solvents but also are valuable intermediates for organic synthesis² and polymer synthesis.³ Although a variety of efficient catalyst systems have been reported,^{1b,4} there are only a few reports of transition-metal-catalyzed the coupling of CO₂ with epoxides.^{1b,5} Furthermore, all these transition-metal-catalyzed procedures were performed either in organic solvent or under oxygen-free conditions. Therefore, development of the new transition-metal

TABLE 1. CO₂ Pressure Effects in the Coupling of 1a with CO₂ Catalyzed by Re(CO)₅Br^a

Cl	$\frac{O}{\Delta}$ + CO_2 $\frac{Re(C)}{solve}$	O) ₅ Br (0.1 % mol) → •nt-free, 110 °C	
entry	$\mathrm{CO}_2(\mathrm{MPa})^b$	time (h)	yield $(\%)^c$
1	1.0	24	36
2	2.0	24	65
3	3.0	24	74
4	4.0	24	82
5	5.5	3	47
6	5.5	6	61
7	5.5	12	85
8	5.5	24	97

^a Reactions were carried out at 110 °C by using 10.0 mmol of 1a and 0.01 mmol of Re(CO)₅Br in a 25 mL autoclave. ^b Initial pressure at ambient temperature. ^c GC yield based on 1a used.

catalyst system for activation of CO_2 is still one of the most interesting and challenging topics in both organometallic chemistry and C₁ chemistry.⁶

Recently, we have reported the first example of an efficient, early transition-metal complex Re(CO)₅Brcatalyzed addition of carboxylic acids to terminal alkynes to afford the alkenyl esters in an air atmosphere.⁷ In continuation of our studies on the application of lowvalent rhenium complexes as catalysts in catalytic organic syntheses, in this paper, we report our new results of $Re(CO)_5Br$ -catalyzed activation of CO_2 in the coupling of epoxides with CO_2 to give cyclic carbonates under solvent-free conditions.

The reactions were carried out in an autoclave at 110 °C with stirring in the presence of 0.1 mol % (relative to epoxide) rhenium complexes. CO2 was pressurized directly to the autoclave under an air atmosphere at ambient temperature.

Table 1 includes the results of CO₂ pressure effects on the yield of 4-chloromethyl-[1,3]dioxolan-2-one 2a from the reaction of chloromethyloxirane 1a with CO_2 . It is apparent from Table 1 that the yield of cyclic carbonate **2a** was increased considerably on increasing the CO_2 pressure. Thus, 2a was obtained in a range of 36-82%

^{(1) (}a) Organic and Bio-organic Chemistry of Carbon Dioxide; Inoue, , Ed.; John Wiley & Sons: New York, 1982. (b) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155-174.

 ^{(2) (}a) Trost, B. M.; Angle, S. R. J. Am. Chem. Soc. 1985, 107, 6123–6124. (b) Fujinami, T.; Suzuki, T.; Kamiya, M.; Fukukawa, S.; Sakai, S. Chem. Lett. 1985, 199–200. (c) Pfaendler, H. R.; Mueller, F. X. Synthesis, 1992, 350–352. (d) Minami, T.; Hanaoka, M. Tetrahedron Systemson, 1994, 35, 9425–9428. (e) Mizingiri, R.; Kobayashi, Y. J. Chem. Soc., Perkin Trans. 1 1995, 2073–2076. (f) Matsumoto, K.; Fuwa, S.; Sic., Terkin Hans, T1505, 2015 2016, 10 Matsubic, R., Hura, S., Kitajima, H. *Tetrahedron Lett.* **1995**, 36, 6499–6502. (g) Streicher, H.; Geyer, A.; Schmidt, R. R. *Chem. Eur. J.* **1996**, 2, 502–510. (h) Chang, K. B. Tetrahedron Lett. 1996, 2, 302–310. (f) Chang,
 H.-T.; Sharpless, K. B. Tetrahedron Lett. 1996, 37, 3219–3222. (i)
 Schultze, L. M.; Chapman, H. H.; Dubree, N. J. P.; Jones, R. J.; Kent,
 K. M.; Lee, T. T.; Louie, M. S.; Postich, M. J.; Prisbe, E. J.; Rohloff, J.
 C.; Yu, R. H. Tetrahedron Lett. 1998, 39, 1853–1856. (j) Mannafov, T. G.; Berdnikov, E. A.; Samuilov, Y. D. Russ. J. Org. Chem. 2001, 37, 339 - 344

⁽³⁾ Rokicki, G.; Pawlicki, J.; Kuran, W. Polym. J. 1985, 17, 509-516 and references therein.

^{(4) (}a) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526-4527. (b) Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Angew. Chem., Int. Ed. 2000, 39, 4096-4098. (c) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.; Reibenspies, J. H. J. Am. Chem. Soc. 2000, 122, 12487–12496. (d) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 14284–14285. (e) Kim, H. S.; Kim, J. J.; Kwon, H. N.; Chung, M. J.; Lee, B. G.; Jang, H. G. J. Catal. 2002, 205, 226-229. (f) Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A.
 Org. Lett. 2002, 4, 2561-2563. (g) Huang, J.-W.; Shi, M. J. Org. Chem.
 2003, 68, 6705-6709. (h) Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.;
 Moon, D.; Jang, H. G. Chem. Eur. J. 2003, 9, 678-686. (i) Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. *Chem. Commun.* **2003**, 896–897. (j) Shen, Y.-M.; Duan, W.-L.; Shi, M. J. Org. Chem. **2003**, 68, 1559 - 1562.

 ^{(5) (}a) Kruper, W. J.; Dellar, D. V. J. Org. Chem. 1995, 60, 725–727.
 (b) Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498–11499.
 (c) Li, F.; Xia, C.; Xu, L.; Sun, W.; Chen, G. Chem. Commun. 2003, 2042-2043.

^{(6) (}a) Leitner, W. Coord. Chem. Rev. 1996, 153, 257–284. (b) Gibson, D. H. Chem. Rev. **1996**, 96, 2063–2095.
 (7) Hua, R.; Tian, X. J. Org. Chem. **2004**, 69, 5782–5784.

conv. $(\%)^{b}$ carbonate 2 yield $(\%)^{b}$ TON^c entry catalyst epoxide CI 71 Re(CO)5CI CI 75 710 1 ò 2a 1a CpRe(CO)₃ 91 93 2a 910 2 1a Re₂(CO)₁₀ 1a 12 2a 9 90 3 Re(CO)_₅Br 50 46 460 4 -Ò 1b 2b *n*-C₆H₁₃ 5 Re(CO)₅Br 80 76 760 n-C₆⊢ 2c Ph 90 85 850 6 Re(CO)₅Br 'n 1d 2d 7 Re(CO)₅Br \cap 97 960 96 'n 2e 1e

TABLE 2.Rhenium(I)-Catalyzed Coupling of Epoxideswith CO_2^a

^{*a*} Reactions were carried out at 110 °C by using 10.0 mmol of **1** and 0.01 mmol of Re(CO)₅Br in a 25 mL autoclave for 20 h under an initial pressure of 6.0 MPa. ^{*b*} Determined by GC based on **1** used. ^{*c*} TON = turnover number: moles of carbonate product per mole of catalyst.

yields under the initial CO_2 pressure of 1.0–4.0 MPa at 110 °C for 24 h (entries 1–4). When the initial pressure was increased to 5.5 MPa, the yield of **2a** was 47% after only 3 h and 97% after 24 h. In these cases, the CO_2 pressure at 110 °C was up to ca. 7.5 MPa, namely, the reactions proceeded under supercritical CO_2 (scCO₂) conditions,⁸ and the best yield of **2a** could be achieved under such reaction conditions. These results indicated that the reaction rate could be accelerated dramatically under supercritical CO_2 conditions.

The catalytic activities of several other rhenium complexes have been compared for the coupling of **1a** with $scCO_2$. These reactions were performed under 6.0 MPa of initial pressure of CO_2 and at 110 °C for 20 h.

Compared to Re(CO)₅Br, Re(CO)₅Cl showed somewhat low catalytic activity to give **2a** in 71% GC yield (Table 2, entry 1). CpRe(CO)₃ catalyzed the same coupling to afford **2a** in high yield (Table 2, entry 2). However, under the same reaction conditions, the zerovalent complex Re₂(CO)₁₀ catalyzed the reaction to give **2a** in only 9% GC yield (Table 2, entry 3).

The coupling reactions of other epoxides with $scCO_2$ in the presence of $Re(CO)_5Br$ have also been investigated. As shown in Table 2, the catalytic activity of $Re(CO)_5Br$ depends greatly on the structure of employed epoxides. Although the high yield of **2a** could be achieved in the coupling of **1a** with CO_2 (Table 1, entry 8), the coupling of methyloxirane **1b** with CO_2 gave 4-methyl-[1,3]dioxolan-2-one **2b** in only moderate yield (46% GC yield) (entry 4), while the reaction of hexyloxirane **1c** with CO_2

SCHEME 1. Proposed Mechanism for Re(CO)₅Br-Catalyzed Coupling of Epoxides with CO₂

produced 4-hexyl-[1, 3]dioxolan-2-one 2c in 76% GC yield. The formation of 2b in only moderate yield might partly be due to the low boiling point (34 °C) of 1b. Furthermore, the coupling reaction of an aryl-substituted epoxide, phenyloxirane 1d, with CO₂ afforded 4-phenyl-[1,3]dioxolan-2-one 2d in 85% GC yield. A functional group of the aryl ether-bearing epoxide, phenoxymethyloxirane 1e, showed higher reactivity, affording 4-phenoxymethyl-[1,3]dioxolan-2-one 2e in 96% GC yield.

However, it should be noted that under the same reaction conditions, the coupling of disubstituted epoxides, such as cyclohexene oxide, *trans*-2,3-epoxybutane and 2,2-dimethyloxirane with CO₂ gave only a trace amount of coupling products (<5%). In the cases where cyclohexene oxide and *trans*-2,3-epoxybutane were used, both starting materials could be recovered (>90%). However, in the case where 2, 2-dimethyloxirane was employed, the reaction gave a mixture of dimers of 2,2-dimethyloxirane confirmed by GC-MS (ca. 50%). These results indicated that Re(CO)₅Br showed good catalytic activity for the coupling of CO₂ with terminal epoxides only.

A possible mechanism for the present $\text{Re}(\text{CO})_5\text{Br}$ catalyzed coupling of epoxides with CO_2 has been proposed as shown in Scheme 1. This proposal is closely related to that of an Ni-catalyzed version of the same reaction.⁹ It involves the formation of 16-electron intermediate **3** via the decarbonylation of $\text{Re}(\text{CO})_5\text{Br}$,¹⁰ the oxidative addition of C–O bond of epoxides to **3** to give oxorhenium intermediate **4**,¹¹ insertion of CO₂ into the Re–O bond, and finally reductive elimination of C–O bond from **5** to produce cyclic carbonate **2** and regenerate **3**.¹²

⁽⁸⁾ A supercritical fluid is a substance above its critical temperature and critical pressure. The critical temperature and critical pressure of CO_2 are 31.0 °C and 7.38 MPa, respectively.

⁽⁹⁾ De Pasquale, R. J. J. Chem. Soc., Chem. Commun. **1973**, 157–158.

^{(10) (}a) Jolly, P. W.; Stone, F. G. A. J. Chem. Soc. 1965, 5259–5263.
(b) Zingales, F.; Sartorelli, U.; Canziani, F.; Raveglia, M. Inorg. Chem. 1967, 6, 154–157.

⁽¹¹⁾ Metallaoxetanes have been postulated as intermediates in metal-promoted/catalyzed transformation of epoxides: Backvall, J.-E.; Bokman, F.; Blomberg, M. R. A. J. Am. Chem. Soc. **1992**, *114*, 534–538 and references therein.

JOC Note

In conlusion, we have developed an efficient, simple catalyst system for $Re(CO)_5Br$ -catalyzed coupling of epoxides with $scCO_2$ to give cyclic carbonates in good to excellent yields under solvent-free conditions.

Acknowledgment. This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Scientific Research Program of Tsinghua University.

Supporting Information Available: Text describing experimental details and the charts of ¹H and ¹³C NMR of **2a–e**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0485785

⁽¹²⁾ Carbon-oxygen bond formation via reductive elimination from transition-metal complexes such as palladium has been reported: (a) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109-13110.
(b) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787-6795. (c) Hua, R.; Tanaka, M. New J. Chem. 2001, 25, 179-184.